Input and Output

*An InputStream is a class that receives data from an input
device such as keyboard, mouse, or touchscreen.

*System.in 1s a predefined input stream object reference that
1s associated with a system's standard input, which 1s usually
a keyboard.

Methods: nextInt, next, nextLine, nextDouble.

OutputStreams

*An OutputStream is a class that supports output data to a
screen, file, or elsewhere.

*System.out 1s a predefined OutputStream object reference that 1s
associated with a system's standard output, usually a computer
screen.

*Methods: print, println, printf.
*Non-string objects are converted to string by the print methods.

* primitive types
* reference types

Use this object to call functions. print, println,and printf

* print() — converts parameter to a string (if not already one) and
prints it out

e println() — prints parameter, and also prints a newline after

* printf() —Formatted string, followed by parameters to “fill in the
blanks”™

Example

System.out.print("Hello, World"); // no newline
Hello, World
System.out.println("Hello\nWorld"); // adds newline at end

Hello
World

int feet = 6, inches = 3;

System.out.printf("I am %d feet and %d inches tall\n", feet,
inches);

I am 6 feet and 3 inches tall

Concatenation

If the + operator is used with at least one string operand, then th
operation is string concatenation.

Other types will be auto-converted to type string if needed

System.out.println("The number of states in the U.S.
is " + 50);

int sides = 8;
System.out.println("Number of sides on a stop
sign = " + sides);

Output Formatting

*A programmer can adjust the way that a program's output appears, a
task known as output formatting.

*The first argument of the printf() method, the format string,
specifies the format of the text to print along with any number
of format specifiers for printing numeric values.

*A format specifier begins with the % character followed by another
character that indicates the value type to be printed.

Formatting text with printf

System.out.printf("format string", parameters);

A format string can contain placeholders to insert parameters:

— %d integer
— %t real number
— Y08 string

* these placeholders are used instead of + concatenation

— Example:

int valuel = 3;

int value2 = -17;

System.out.printf("x is %d and y is %d!\n", valuel, value2);
//xis3and y is -17!

e printf does not drop to the next line unless you write \n

Formatting text with printf

System.out.printf("format string", parameters);

Second %d specifies how to print the second parameter

First %d goes specifies how to print the first parameter

int valuel = 3;

int vaule2 = -17;

System.out.printf("x is %d and y 1s %d'\n", valuel, vaule2);
//xis3andy is -17!

printf does not drop to the next line unless you write \n

Example:

String account = "Prime";

double total = 210.35; The Prime account saved

int years = 5; you $210.350000 over 5
Prime 210 35 5 years.

System.out.printf ("The $%$s account saved you $%f over %d years\n",
account, total, years);

I I I
%s %f %d

Captions A

1. The printf() format string contains 3 format specifiers: %s, %f, and %d.
2. The 3 arguments after the format string are matched with the format specifiers. %s = account, %f = total, %d = years
3. The string is printed with the 3 variables substituted into the format string.

10

Table 5.2.1: Format specifiers for the printf() and format() methods.

Format specifier

%C

%d

%0

%h

%f

%e

%S

%%

%N

Data type(s)
char
int, long, short
int, long, short
int, char, long, short
float, double
float, double

String

Notes

Prints a single Unicode character

Prints a decimal integer value.

Prints an octal integer value.

Prints a hexadecimal integer value.

Prints a floating-point value.

Prints a floating-point value in scientific notation.
Prints the characters in a String variable or literal.
Prints the "%" character.

Prints the platform-specific new-line character.

11

int numStudents = 25;
char letterGrade = ’A’;
double gpa = 3.95;

System.out.printf ("There are ’%d students\n",
numStudents) ;
System.out.printf ("Bobby’s course grade was %c, and
his GPA is %f\n", letterGrade, gpa);

// The output from this example is:
// There are 25 students
// Bobby’s course grade was A, and his GPA is 3.950000

12

Floating-point values

e Formatting floating-point output is commonly done using sub-specifiers. A sub-
specifier provides formatting options for a format specifier and are included between the %
and format specifier character.

* Ex: The .1 sub-specifier in printf("%.11", myFloat);causes the floating-point variable myFloat
to be output with only 1 digit after the decimal point; if myFloat is 12.34, the output would
be 12.3. Format specifiers and sub-specifiers use the following form:

Construct 5.2.1: Format specifiers and sub-specifiers.

%(flags) (width) (.precision)specifier

13

The table below summarizes the floating-point sub-specifiers available. Assume myFloat

has a value of 12.34. Recall that %f is used for floating-point values and %e is used to
display floating-point values in scientific notation.

Table 5.2.2: Floating-point formatting.

Method calls to printf() apply to PrintStream objects like System.out.

Sub-
specifier

width

.precision

flags

Description

Specifies the minimum number of characters to print. If the formatted
value has more characters than the width, the value will not be truncated.
If the formatted value has fewer characters than the width, the output will
be padded with spaces (or O's if the '0' flag is specified).

Specifies the number of digits to print following the decimal point. If the
precision is not specified, a default precision of 6 is used.

-: Left aligns the output given the specified width, padding the output with
spaces.

+: Prints a preceding + sign for positive values. Negative numbers are
always printed with the - sign.

0: Pads the output with 0's when the formatted value has fewer
characters than the width.

space: Prints a preceding space for positive value.

Example

printf("Value: %7.2f", myFloat);
Value: 12.34

printf("%.4f", myFloat);
12.3400

printf("%3.4e", myFloat);
1.2340e+01

printf("%s+f", myFloat);
+12.340000
printf("%08.2f", myFloat);
00012.34

14

printf precision

e To specify how many decimal places for the output of a floating point value,
modify the ‘%f’ symbol in this format:

% .Df // where D is the number of decimal places
Example:
double gpa = 3.275;
double PI =3.1415;
System.out.printf("gpa = % .2{", gpa);
System.out.printf("PI = %.3t", PI);

Output is:
gpa=3.28
Pl =3.142

15

printf precision

- 5.Df real number, rounded to D digits after decimal
- sW.Df real number, W chars wide, D digits after decimal
- 5-W.Df real number, W wide (left-align), D after decimal

double gpa = 3.253764;
System.out.printf ("your GPA is %.1£\n", gpa);
System.out.printf ("more precisely: %$8.3£f\n", gpa);

Output:

3
yvour GPA is 3.3 —
more precisely: 3.254

\ J

o <

16

printf width

- sWE real number, W characters wide, right-aligned

Example:

myFloat= 12.34f

printf ("Value: $7.2f", myFloat);
printf ("Value: %$8.2f", myFloat);

Output:
Value: 12.34

Value: 12 .34

17

- $-Ws real number, W characters wide, /eft-aligned

- 3+Ws real number, W characters wide, right-aligned
Prints a preceding + sign for positive values. Negative numbers are always printed with the - sign.
- $0Wt real number, W characters wide, right-aligned

Pads the output with 0's when the formatted value has fewer characters than the width.
Example:
myFloat= 12.34f

printf ("Value: %-7.2f", myFloat);
printf ("Value: $+7.2f", myFloat);
printf ("Value: %07.2f", myFloat);

Output:
Value:12.34

Value: +12.34
Value:0012.34

18

Print formatting - What is the output from the following print
statements, assuming: float myFloat = 45.1342f;

System.out.printf("%09.3f", myFloat);
(answer: 00045.134)

System.out.printf("%.3e", myFloat);
(answer: 4.513e+01)

System.out.printf("%09.2f", myFloat);
(answer: 000045.13)

19

Integer values

Formatting of integer values is also done using sub-specifiers. The integer sub-
specifiers are similar to the floating-point sub-specifiers except no .precision exists.

For the table below, assume myint is 301.
Method calls to printf() apply to PrintStream objects like System.out.

Sub- _—
specfier Description Example
Specifies the minimum number of characters to print. If the formatted value
width has more characters than the width, the value will not be truncated. If the printf("Value: %7d", myInt);
formatted value has fewer characters than the width, the output will be Value: 301

padded with spaces (or O's if the '0' flag is specified).

printf("%+d", myInt);

- Left aligns the output given the specified width, padding the output with +301

spaces.
+: Print a preceding + sign for positive values. Negative numbers are always
flags printed with the - sign.
0: Pads the output with 0's when the formatted value has fewer characters
than the width.
space: Prints a preceding space for positive value.

printf("%08d", mylInt);
00000301

printf("%+08d", myInt);
+0000301

20

Print formatting - What is the output from the following print
statements, assuming: int mylnt= 301

printf("%+d", mylnt);
(answer: +301

printf("%08d", mylnt);
(answer: 00000301

printf("%+08d", mylnt);
(answer: +0000301

21

e Print formatting - What is the output from the following print
statements, assuming: int value of -713

printf("%+04d", mylnt);
(answer: -713

printf("%05d", mylnt);
(answer: -0713

printf("%+02d", mylnt);
(answer: -713

22

Strings may be formatted using sub-specifiers. For the table below, assume the
myString variable is "Formatting".

Table 5.2.4: String formatting.

Method calls to printf() apply to PrintStream objects like System.out.

Sub- _
: Description
specifier
Specifies the minimum number of characters to print. If the string has
width more characters than the width, the value will not be truncated. If the
formatted value has fewer characters than the width, the output will be
padded with spaces.
o Specifies the maximum number of characters to print. If the string has
R more characters than the precision, the string will be truncated.
e -: Left aligns the output given the specified width, padding the output

with spaces.

Example

printf("%20s String", myString);
Formatting String

printf("%.6s", myString);
Format

printf("%-20s String", myString);
Formatting String

23

- SWs string, Specifies the minimum number of characters
to print.

- %.Ds string, Specifies the maximum number of characters
to print.

- %$-wWs string, w wide (left-align)

24

Print formatting - What is the output from the following print
statements, assuming: String myString = "Testing";
(show all responses inside quotes " ")

printf("%4s", myString);
(answer: Testing

printf("%8s", myString);
(answer: Testing

printf("%.4s", myString);
(answer: Test

25

xamples of printf format specifiers:

Type Specifier Example Output
int %d 123
%5d 123
%-5d 128
double $f 1.23
%8.1f 1.2
%8.4f 1.2300
%$-8.2f 1.23
String %S hello
%10s hello
%$-10s hello

First value (5, 8 or 10 above) is the field width.
No value means as much space as required.
.value (e.g., .1, .4, .4) number of decimal places

- (minus) means left justified. ° 26

TABLE 4.5 Common Format Specifiers

Specifier Result

%d integer

%8d integer, right-aligned, 8-space-wide field

%-6d integer, left-aligned, 6-space-wide field

% f floating-point number

212F floating-point number, right-aligned, 12-space-wide field
g.2F floating-point number, rounded to nearest hundredth
816.3f floating-point number, rounded to nearest thousandth, 16-space-wide field
%S string

%8s string, right-aligned, 8-space-wide field

%-9s string, left-aligned, 9-space-wide field

27

27

