
1

Input and Output

2

InputStreams
•An InputStream is a class that receives data from an input
device such as keyboard, mouse, or touchscreen.

•System.in is a predefined input stream object reference that
is associated with a system's standard input, which is usually
a keyboard.

•Methods: nextInt, next, nextLine, nextDouble.

3

OutputStreams
•An OutputStream is a class that supports output data to a
screen, file, or elsewhere.

•System.out is a predefined OutputStream object reference that is
associated with a system's standard output, usually a computer
screen.

•Methods: print, println, printf.

•Non-string objects are converted to string by the print methods.
• primitive types
• reference types

4

Use this object to call functions. print, println,and printf

• print() – converts parameter to a string (if not already one) and
prints it out

• println() – prints parameter, and also prints a newline after

• printf() –Formatted string, followed by parameters to ”fill in the
blanks”

5

Example

System.out.print("Hello, World"); // no newline

Hello, World

System.out.println("Hello\nWorld"); // adds newline at end

Hello
World

int feet = 6, inches = 3;
System.out.printf("I am %d feet and %d inches tall\n", feet,
inches);
I am 6 feet and 3 inches tall

6

Concatenation

7

Output Formatting
•A programmer can adjust the way that a program's output appears, a
task known as output formatting.

•The first argument of the printf() method, the format string,
specifies the format of the text to print along with any number
of format specifiers for printing numeric values.

•A format specifier begins with the % character followed by another
character that indicates the value type to be printed.

8

Formatting text with printf
System.out.printf("format string", parameters);

A format string can contain placeholders to insert parameters:
– %d integer
– %f real number
– %s string

• these placeholders are used instead of + concatenation

– Example:

int value1 = 3;
int value2 = -17;
System.out.printf("x is %d and y is %d!\n", value1, value2);

// x is 3 and y is -17!

• printf does not drop to the next line unless you write \n

9

Formatting text with printf

System.out.printf("format string", parameters);

int value1 = 3;
int vaule2 = -17;
System.out.printf("x is %d and y is %d!\n", value1, vaule2);

// x is 3 and y is -17!

printf does not drop to the next line unless you write \n

First %d goes specifies how to print the first parameter

Second %d specifies how to print the second parameter

9

10

Example:

11

12

Example

13

Floating-point values
• Formatting floating-point output is commonly done using sub-specifiers. A sub-
specifier provides formatting options for a format specifier and are included between the %
and format specifier character.

• Ex: The .1 sub-specifier in printf("%.1f", myFloat);causes the floating-point variable myFloat
to be output with only 1 digit after the decimal point; if myFloat is 12.34, the output would
be 12.3. Format specifiers and sub-specifiers use the following form:

14

The table below summarizes the floating-point sub-specifiers available. Assume myFloat
has a value of 12.34. Recall that %f is used for floating-point values and %e is used to
display floating-point values in scientific notation.

15

printf precision
• To specify how many decimal places for the output of a floating point value,

modify the ‘%f’ symbol in this format:

%.Df // where D is the number of decimal places
Example:
double gpa = 3.275;
double PI = 3.1415;
System.out.printf("gpa = %.2f", gpa);
System.out.printf("PI = %.3f", PI);

Output is:
gpa = 3.28
PI = 3.142

16

printf precision
– %.Df real number, rounded to D digits after decimal
– %W.Df real number, W chars wide, D digits after decimal
– %-W.Df real number, W wide (left-align), D after decimal

double gpa = 3.253764;
System.out.printf("your GPA is %.1f\n", gpa);
System.out.printf("more precisely: %8.3f\n", gpa);

Output:
your GPA is 3.3
more precisely: 3.254

8

3

17

printf width
– %Wf real number, W characters wide, right-aligned

Example:
myFloat= 12.34f
printf("Value: %7.2f", myFloat);
printf("Value: %8.2f", myFloat);

Output:
Value: 12.34

Value: 12.34

18

printf flag
– %-Wf real number, W characters wide, left-aligned
– %+Wf real number, W characters wide, right-aligned

Prints a preceding + sign for positive values. Negative numbers are always printed with the - sign.

– %0Wf real number, W characters wide, right-aligned
Pads the output with 0's when the formatted value has fewer characters than the width.

Example:
myFloat= 12.34f

printf("Value: %-7.2f", myFloat);
printf("Value: %+7.2f", myFloat);
printf("Value: %07.2f", myFloat);

Output:
Value:12.34__

Value:_+12.34

Value:0012.34

19

Exercise
Print formatting - What is the output from the following print
statements, assuming: float myFloat = 45.1342f;

System.out.printf("%09.3f", myFloat);
(answer: 00045.134)

System.out.printf("%.3e", myFloat);
(answer: 4.513e+01)

System.out.printf("%09.2f", myFloat);
(answer: 000045.13)

20

Integer values
Formatting of integer values is also done using sub-specifiers. The integer sub-
specifiers are similar to the floating-point sub-specifiers except no .precision exists.
For the table below, assume myInt is 301.

21

Print formatting - What is the output from the following print
statements, assuming: int myInt= 301

printf("%+d", myInt);
(answer: +301

printf("%08d", myInt);
(answer: 00000301

printf("%+08d", myInt);
(answer: +0000301

22

• Print formatting - What is the output from the following print
statements, assuming: int value of -713

printf("%+04d", myInt);
(answer: -713

printf("%05d", myInt);
(answer: -0713

printf("%+02d", myInt);
(answer: -713

23

Strings
Strings may be formatted using sub-specifiers. For the table below, assume the
myString variable is "Formatting".

24

– %Ws string, Specifies the minimum number of characters
to print.

– %.Ds string, Specifies the maximum number of characters
to print.

– %-ws string, w wide (left-align)

25

Print formatting - What is the output from the following print
statements, assuming: String myString = "Testing";
(show all responses inside quotes " ")

printf("%4s", myString);
(answer: Testing

printf("%8s", myString);
(answer: Testing

printf("%.4s", myString);
(answer: Test

26

Examples of printf format specifiers:
Type Specifier Example Output
int %d 123

%5d 123
%-5d 128

double %f 1.23
%8.1f 1.2
%8.4f 1.2300
%-8.2f 1.23

String %s hello
%10s hello
%-10s hello

First value (5, 8 or 10 above) is the field width.
No value means as much space as required.
.value (e.g., .1, .4, .4) number of decimal places
- (minus) means left justified. 26

27
27

TABLE 4.6 Common Format Specifiers (page 260)

